

Feb 19-8:47 AM

Ch. 1

Let x be a discrete random Variable with prob. dist. $P(x)$

Prob. dist is a way, to give the Prob. for all possible out comps.

1) could be in the form of table, chart, graph, or formula.

Some rules:

1) $0 \leq P(x) \leq 1$
2) $\sum p(x)=1$
3) $P(x)=1 \leftrightarrow$ Sure event
4) $P(x)=0 \leftrightarrow$ Impossible event
5) $0<P(x) \leq .05 \leftrightarrow$ Rare event.

Consider the chart below

x	$P(x)$	1) Verify $\quad \sum P(x)=1$
1	.2	
2	.5	$2+.5+.3=1 \sqrt{2}$ 3$\quad .3$
2) $P(x \leq 2)=.2+.5=0.7$		

3) Draw prob, dist. histogram. $x \rightarrow$ Midpoint
$P(x) \rightarrow$ Rel.F.

Jan 30-5:02 PM

A box has 2 dimes, 3 nickels.
Take 2 coins with replacement Let x be \# of dimes

$$
D D \rightarrow x=2 \quad P(x=2)=\frac{2}{5} \cdot \frac{2}{5}=\frac{4}{25}=\cdot 16
$$

$$
\begin{aligned}
& \text { SN } \rightarrow x=1 \quad P(x=1)=2\left(\frac{2}{5} \cdot \frac{3}{5}\right)=\frac{12}{25}=.48 \\
& N D
\end{aligned}
$$

$$
N N \rightarrow x=0 \quad P(x=0)=\frac{3}{5} \cdot \frac{3}{5}=\frac{9}{25}=.36
$$

1) $\sum P(x)=1$

$$
.36+.48+.16=1 \sqrt{ }
$$

2) $P(x \geq 1)=.48+.16=64$
3) Draw Prob. dist.
 histogram
.16

Consider the chart below

x	$P(x)$
1	.1
2	.3
3	.4
4	.2

1) $P(x=4)$

$$
=1-[.1+.3+.4]=.2
$$

2) $P(x=2$ or $x=4)=$

$$
.3+.2=.5
$$

3) Draw Prob. dist.
histogram. 4

Jan 30-5:14 PM

4 Women No replacement
6 Men
Select a different people
Let x be \# of women Selected

$$
\begin{array}{ll}
x=0 & P(M M)=\frac{6}{10} \cdot \frac{5}{9}=\frac{30}{90} \\
x=1 & P(1 W, 1 M)=2\left(\frac{4}{10} \cdot \frac{6}{9}\right)=\frac{48}{90} \\
x=2 \quad P(W W)=\frac{4}{10} \cdot \frac{3}{9}=\frac{12}{90} \\
x & P(x) \\
\hline 0 & 30 / 90 \\
\hline 1 & 48 / 90 \\
2 & 12 / 90
\end{array}
$$

Complete the chart below

x	$P(x)$	$x p(x)$	$x^{2} p(x)$
1	.3	.3	.3
2	.5	1.0	2.0
3	.2	.6	1.8

1) $\sum x p(x)=1.9$
2) $\sum x^{2} p(x)=4.1$
3) Compute

$$
\begin{aligned}
& \sum x^{2} p(x)-\left(\sum x p(x)\right)^{2} \\
= & 4.1-1.9^{2}=.49
\end{aligned}
$$

4) Compute $\sqrt{\text { Last Answer }}=\sqrt{.49}=.7$

Jan 30-5:25 PM

Complete the chart below

x	$p(x)$	$x p(x)$	$x^{2} p(x)$
1	.1	.1	.1
2	.4	.8	1.6
3	.3	.9	2.7
4	.2	.8	3.2

1) $\sum P(x)=1 \checkmark$
2) $\sum x p(x)=2.6$
3) $\sum x^{2} p(x)=7.6$
4) Compute $\sum x^{2} p(x)-\left(\sum x p(x)\right)^{2}=$ $7.6-(2.6)^{2}=.84$
5) Compute $\sqrt{\text { Last answer }}=\sqrt{.84} \approx .917$

Mean $\mu \mathrm{mu}$
Variance σ^{2} sigma a^{2}
standard deviation σ Sigma
How to find them:

$$
\begin{gathered}
\mu=\sum x p(x) \quad \sigma^{2}=\sum x^{2} p(x)-\mu^{2} \\
\sigma=\sqrt{\sigma^{2}}
\end{gathered}
$$

Jan 30-5:38 PM

Jan 30-5:50 PM

5 Dimes 10 Nickels Select 3 Coins, No replacement

$$
\begin{aligned}
& P(3 D)=\frac{{ }_{5} C_{3}}{15^{C_{3}}}=\frac{2}{91} \\
& P(3 N)=\frac{10^{C_{3}}}{15 C_{3}}=\frac{24}{91} \\
& P(\text { at least } 1 D)=1-P(\text { No } D) \\
& =1-P(A \| N)=1-\frac{24}{91}, \frac{67}{91} \\
& P(\text { at least } 1 N)=1-P(\text { No } N) \\
& =1-P(A \| D) \\
& P(\text { all Same denomination }) \quad-\frac{2}{91}=\frac{89}{91} \\
& \begin{aligned}
=P(\text { NaN OR DoD })=\frac{24}{91} & +\frac{2}{91}=\frac{26}{91} \\
& =\frac{2}{7}
\end{aligned}
\end{aligned}
$$

25 Tuts sold for $\$ 10$ each one TKT drawn \rightarrow winner gets a Call worth $\$ 100$.

Net Pay	P (Net Pay)
$10-100$	$1 / 25$
$10-0$	$24 / 25$

Net pay $\rightarrow x \rightarrow L I$

$$
P(\text { Net pay }) \rightarrow P(x) \rightarrow L 2
$$

STAT \mapsto CALL

$$
\mu=\bar{x}=\$ 6
$$

I make $\$ 6 /$ TET
Expected Value

List: LI
Freqlist:L?
Calculate

You are flying out of town.
You have a very expensive item.
You buy insurance for $\$ 50$, Any damages, airline pays you \$1000.
Prob. of damage is $.2 \%$ Per AAA.

Pay me \$5
Draw one card from a standard deck of Playing Cards
Ace $\rightarrow \$ 25$
Face $\rightarrow \$ 5$

otherwise \rightarrow Nothing
$5-0$

Net $\rightarrow L 1 \quad E_{0} . V_{1}=\mu=\bar{x} \quad \widetilde{\$ 1}^{\$ 1.92} /$ bet $P\left(\mathrm{Net}^{2}\right) \rightarrow L 2$

1-Var stats

$$
\text { SG } 14 \text { ? } 15
$$

Binomial Prob, dist.:

1) There are n independent events (Trials).
2) Each event has only two outcomes

$$
\begin{gathered}
P(\text { Success })=p \quad P(\text { Failure })=q \\
p+q=1 \\
p \varepsilon_{1} q \text { remain unchanged for }
\end{gathered}
$$ all trials

3) $x \rightarrow \#$ of Successes

$$
n-x \rightarrow \# \text { of failures }
$$

$$
P(x)=n^{C} x \cdot p^{x} \cdot q^{n-x}
$$

You flip a fair Coin 10 times.
Success is to land tails.

$$
n=10
$$

$$
P=.5
$$

$P($ land 6 tails $)$

$$
q=.5
$$

You are taking a multiple-choire exam. There are 12 questions.

$$
n=12
$$

Each question has 4 choices but only one correct choice.

$$
\begin{aligned}
& p=\frac{1}{4}=.25 \\
& q=\frac{3}{4}=.75
\end{aligned}
$$

You make random guesses.
$P($ guess exactly 5 correct Ans.)

$$
P(x=5)=12 C_{5} \cdot(.25)^{5} \cdot(.75)^{7}=.103
$$

FedEx Says each package has 90% chance to arrive ontime or earlier.

$$
\begin{aligned}
& n=40 \\
& p=.9 \\
& q=.1
\end{aligned}
$$

Randomly Select 40 packages.
$P($ exactly 35 arrive on time or sooner):

$$
P(x=35)=40 C_{35} \cdot(.9)^{35} \cdot(.1)^{5}=\frac{.165}{4}
$$

using TI:
and VARS \& b binompdf $=.165$
Trials: 40

$$
\begin{gathered}
P(x=35)=\operatorname{binompdf}(40, .9,35) \\
=.65
\end{gathered}
$$

$$
p: .9
$$

x value: 35
Paste Enter
$P(38$ packages arrive ontime or sooner)

$$
P(x=38)=\operatorname{binompdf}(40, .9,38)=.142
$$

